skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gaynor, Layne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human-driven environmental change underlies recent changes in water clarity in many of the world’s great lakes, yet our understanding of the consequences of these changes on the fish and fisheries they support remains incomplete. Herein, we offer a framework to organize current knowledge, guide future research, and help fisheries managers understand how water clarity can affect their valued populations. Emphasizing Laurentian Great Lakes findings where possible, we describe how changing water clarity can directly affect fish populations and communities by altering exposure to ultraviolet radiation, foraging success, predation risk, reproductive behavior, or territoriality. We also discuss how changing water clarity can affect fisheries harvest and assessment through effects on fisher behavior and sampling efficiency (i.e., catchability). Finally, we discuss whether changing water clarity can affect understudied aspects of fishery performance, including economic and community benefits. We conclude by identifying generalized predictions and discuss their implications for priority research questions for the Laurentian Great Lakes. Even though the motivation for this work was regional, the breadth of the review and generality of the framework are readily transferable to other freshwater and marine habitats. 
    more » « less